Dostęp do tego artykułu jest płatny.
Zapraszamy do zakupu!
Cena: 12.50 PLN (z VAT)
Kup artykuł
Po dokonaniu zakupu artykuł w postaci pliku PDF prześlemy bezpośrednio pod twój adres e-mail.
MS 2020; 3: 88-94
Paweł Kubasiewicz-Ross, Anna Naglik, Marek Nahajowski, Wiktoria Gibiec, Artur Pitułaj
Streszczenie
Autorzy przedstawili analizę porównawczą wyników stabilizacji pierwotnej implantów tytanowych pokrywanych hydroksyapatytem oraz implantów o powierzchni gładkiej. Sumarycznie 24 implanty podzielono na dwie grupy o jednakowej liczebności, w zależności od rodzaju powierzchni. Implanty były oceniane na modelu in vitro. Stabilizację badano, stosując trzy metody pomiarowe: metodę uderzeniową sondą pomiarową, analizę częstotliwości tłumienia drgań oraz ocenę momentu wykręcającego implant. Stwierdzono wyższe wyniki stabilizacji pierwotnej implantów o powłoce hydroksyapatytowej w analizie częstotliwości tłumienia drgań.
Abstract
The authors presented the comparison of the primary stabilization results of the titanium machined surface implants with HA-coated implants. In total 24 dental implants were applied into in vitro study. The implants were divided into two equal groups basing on the surface characteristics. The stabilization was evaluated with three different methods: impact hammer method, resonance frequency analysis, reverse torque test. The higher level of HA-coated implant stabilization in resonance frequency analysis was reported.
Hasła indeksowe: stabilizacja pierwotna, wszczepy stomatologiczne, model in vitro, pokrywanie hydroksyapatytem
Key words: primary stabilization, dental implants, in vitro model, HA-coating
PIŚMIENNICTWO
1. Garg R. i wsp.: Implant survival between endo osseous dental implants in immediate loading, delayed loading, and basal immediate loading dental implants a 3-year follow-up. Ann. Maxillofac. Surg., 2017, 7, 2, 237-244.
2. Marheineke N. i wsp.: Evaluation of accuracy in implant site preparation performed in single- or multi-step drilling procedures. Clin. Oral Investig., 2018, 22, 5, 2057-2067.
3. Di Stefano D.A. i wsp.: The insertion torque-depth curve integral as a measure of implant primary stability: An in vitro study on polyurethane foam blocks. J. Prosthet. Dent., 2018, 120, 5, 706-714.
4. Teerlinck J. i wsp.: Periotest: an objective clinical diagnosis of bone apposition toward implants. Int. J. Oral Maxillofac. Implants, 1991, 6, 1, 55-61.
5. Aparicio C.: The use of the PTV value as initial success criteria of an implant: 8-year report. Int. J. Periodontics Restorative Dent., 1997, 17, 2, 150-161.
6. Park C.H.J.: In vitro comparative study between ISQ and Periotest Values on the implant stability measurements according to the increased effective implant lenght. J. Korean Acad. Prosthodont., 2001, 39, 6, 625-632.
7. Huang H.M. i wsp.: Resonance frequency assessment of dental implant stability with various bone qualities: a numerical approach. Clin. Oral Implants Res., 2002, 13, 1, 65-74.
8. Bischof M.: Implant stability measurement of delayed and immediately loaded implants during healing. Clin. Oral Implants Res., 2004, 15, 5, 529-539.
9. Trisi P. i wsp.: Primary stability, insertion torque and bone density of cylindric implant ad modum Branemark: is there a relationship? An in vitro study. Clin. Oral Impl. Res., 2011, 22, 5, 567-570.
10. Song Y.Y., Cha J.Y., Hwang C.J.: Mechanical characteristics of various orthodontic mini-screws in relation to artificial cortical bone thickness. Angle Orthod., 2007, 77, 6, 979-785.
11. Campbell A.A.: Bioceramics for implant coatings. Mat. Today, 2003, 11, 6, 26-30.
12. Al-Jetaily S., Al-dosari A.A.: Assessment of Osstell™ and Periotest® systems in measuring dental implant stability (in vitro study). Saudi Dent. J., 2011, 23, 1, 17-21.
13. Meredith N., Alleyne D., Cawley P.: Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin. Oral Implants Res., 1996, 7, 3, 261-267.
14. López A.B.: Resonance frequency analysis after the placement of 133 dental implants oral surgery. Med. Oral Patol. Oral Cir. Bucal, 2006, 11, 3, E272-E276.
15. Östman P.O., Hellman M., Sennerby L.: Direct implant loading in experimental study in the edentulous maxilla using a bone density-adapted surgical protocol and primary implant stability criteria for inclusion. Clin. Implant Dent. Relat. Res., 2005, 7, 1, 60-69.
16. Shokri M., Daraeighadikolaei A.: Measurement of primary and secondary stability of dental implants by resonance frequency analysis method in mandible. Int. J. Dent., 2013, 506968.
17. Sjöström M. i wsp.: Reconstruction of the atrophic edentulous maxilla with free iliac crest grafts and implants: a 3-year report of a prospective clinical study. Clin. Implant Dent. Relat. Res., 2007, 9, 46-59.
18. Fischer K., Bäckström M., Sennerby L.: Immediate and early loading of oxidized tapered implants in the partially edentulous maxilla: a 1-year prospective clinical, radiographic, and resonance frequency analysis study. Clin. Implant Dent. Relat. Res., 2009, 11, 69.
19. Glauser R. i wsp.: Resonance frequency analysis of implants subjected to immediate or early functional occlusal loading. Successful vs. failing implants. Clin. Oral Implants Res., 2004, 15, 428-434.
20. Ostman P.O., Wennerberg A., Albrektsson T.: Immediate occlusal loading of NanoTite PREVAIL implants: a prospective 1-year clinical and radiographic study. Clin. Implant Dent. Relat. Res., 2010, 12, 39-44.
21. Nawas B. i wsp.: Machined versus double-etched dental implants in vivo. Clin. Implant Dent. Relat. Res., 2007, 9, 71-78.
22. Fröberg K.K., Lindh C., Ericsson I.: Immediate loading of Brånemark System Implants: a comparison between Ti-Unite and turned implants placed in the anterior mandible. Clin. Implant Dent. Relat. Res., 2006, 8, 187-197.
23. Shalabi M.M., Wolke J.G., Jansen J.A.: The effects of implant surface model. Clin. Oral Implants Res., 2006, 17, 172-178.
24. Rompen E. i wsp.: Stability measurements of a double-threaded titanium implant design with turned or oxidised surface. Appl. Osseointegration Res., 2000, 1, 18-20.
25. Łukaszewska-Kuska M. i wsp.: Effects of a hydroxyapatite coating on the stability of endosseous implants in rabbit tibiae. Dent. Med. Probl., 2019, 56, 2, 123-129.
Streszczenie
Autorzy przedstawili analizę porównawczą wyników stabilizacji pierwotnej implantów tytanowych pokrywanych hydroksyapatytem oraz implantów o powierzchni gładkiej. Sumarycznie 24 implanty podzielono na dwie grupy o jednakowej liczebności, w zależności od rodzaju powierzchni. Implanty były oceniane na modelu in vitro. Stabilizację badano, stosując trzy metody pomiarowe: metodę uderzeniową sondą pomiarową, analizę częstotliwości tłumienia drgań oraz ocenę momentu wykręcającego implant. Stwierdzono wyższe wyniki stabilizacji pierwotnej implantów o powłoce hydroksyapatytowej w analizie częstotliwości tłumienia drgań.
Abstract
The authors presented the comparison of the primary stabilization results of the titanium machined surface implants with HA-coated implants. In total 24 dental implants were applied into in vitro study. The implants were divided into two equal groups basing on the surface characteristics. The stabilization was evaluated with three different methods: impact hammer method, resonance frequency analysis, reverse torque test. The higher level of HA-coated implant stabilization in resonance frequency analysis was reported.
Hasła indeksowe: stabilizacja pierwotna, wszczepy stomatologiczne, model in vitro, pokrywanie hydroksyapatytem
Key words: primary stabilization, dental implants, in vitro model, HA-coating
PIŚMIENNICTWO
1. Garg R. i wsp.: Implant survival between endo osseous dental implants in immediate loading, delayed loading, and basal immediate loading dental implants a 3-year follow-up. Ann. Maxillofac. Surg., 2017, 7, 2, 237-244.
2. Marheineke N. i wsp.: Evaluation of accuracy in implant site preparation performed in single- or multi-step drilling procedures. Clin. Oral Investig., 2018, 22, 5, 2057-2067.
3. Di Stefano D.A. i wsp.: The insertion torque-depth curve integral as a measure of implant primary stability: An in vitro study on polyurethane foam blocks. J. Prosthet. Dent., 2018, 120, 5, 706-714.
4. Teerlinck J. i wsp.: Periotest: an objective clinical diagnosis of bone apposition toward implants. Int. J. Oral Maxillofac. Implants, 1991, 6, 1, 55-61.
5. Aparicio C.: The use of the PTV value as initial success criteria of an implant: 8-year report. Int. J. Periodontics Restorative Dent., 1997, 17, 2, 150-161.
6. Park C.H.J.: In vitro comparative study between ISQ and Periotest Values on the implant stability measurements according to the increased effective implant lenght. J. Korean Acad. Prosthodont., 2001, 39, 6, 625-632.
7. Huang H.M. i wsp.: Resonance frequency assessment of dental implant stability with various bone qualities: a numerical approach. Clin. Oral Implants Res., 2002, 13, 1, 65-74.
8. Bischof M.: Implant stability measurement of delayed and immediately loaded implants during healing. Clin. Oral Implants Res., 2004, 15, 5, 529-539.
9. Trisi P. i wsp.: Primary stability, insertion torque and bone density of cylindric implant ad modum Branemark: is there a relationship? An in vitro study. Clin. Oral Impl. Res., 2011, 22, 5, 567-570.
10. Song Y.Y., Cha J.Y., Hwang C.J.: Mechanical characteristics of various orthodontic mini-screws in relation to artificial cortical bone thickness. Angle Orthod., 2007, 77, 6, 979-785.
11. Campbell A.A.: Bioceramics for implant coatings. Mat. Today, 2003, 11, 6, 26-30.
12. Al-Jetaily S., Al-dosari A.A.: Assessment of Osstell™ and Periotest® systems in measuring dental implant stability (in vitro study). Saudi Dent. J., 2011, 23, 1, 17-21.
13. Meredith N., Alleyne D., Cawley P.: Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin. Oral Implants Res., 1996, 7, 3, 261-267.
14. López A.B.: Resonance frequency analysis after the placement of 133 dental implants oral surgery. Med. Oral Patol. Oral Cir. Bucal, 2006, 11, 3, E272-E276.
15. Östman P.O., Hellman M., Sennerby L.: Direct implant loading in experimental study in the edentulous maxilla using a bone density-adapted surgical protocol and primary implant stability criteria for inclusion. Clin. Implant Dent. Relat. Res., 2005, 7, 1, 60-69.
16. Shokri M., Daraeighadikolaei A.: Measurement of primary and secondary stability of dental implants by resonance frequency analysis method in mandible. Int. J. Dent., 2013, 506968.
17. Sjöström M. i wsp.: Reconstruction of the atrophic edentulous maxilla with free iliac crest grafts and implants: a 3-year report of a prospective clinical study. Clin. Implant Dent. Relat. Res., 2007, 9, 46-59.
18. Fischer K., Bäckström M., Sennerby L.: Immediate and early loading of oxidized tapered implants in the partially edentulous maxilla: a 1-year prospective clinical, radiographic, and resonance frequency analysis study. Clin. Implant Dent. Relat. Res., 2009, 11, 69.
19. Glauser R. i wsp.: Resonance frequency analysis of implants subjected to immediate or early functional occlusal loading. Successful vs. failing implants. Clin. Oral Implants Res., 2004, 15, 428-434.
20. Ostman P.O., Wennerberg A., Albrektsson T.: Immediate occlusal loading of NanoTite PREVAIL implants: a prospective 1-year clinical and radiographic study. Clin. Implant Dent. Relat. Res., 2010, 12, 39-44.
21. Nawas B. i wsp.: Machined versus double-etched dental implants in vivo. Clin. Implant Dent. Relat. Res., 2007, 9, 71-78.
22. Fröberg K.K., Lindh C., Ericsson I.: Immediate loading of Brånemark System Implants: a comparison between Ti-Unite and turned implants placed in the anterior mandible. Clin. Implant Dent. Relat. Res., 2006, 8, 187-197.
23. Shalabi M.M., Wolke J.G., Jansen J.A.: The effects of implant surface model. Clin. Oral Implants Res., 2006, 17, 172-178.
24. Rompen E. i wsp.: Stability measurements of a double-threaded titanium implant design with turned or oxidised surface. Appl. Osseointegration Res., 2000, 1, 18-20.
25. Łukaszewska-Kuska M. i wsp.: Effects of a hydroxyapatite coating on the stability of endosseous implants in rabbit tibiae. Dent. Med. Probl., 2019, 56, 2, 123-129.