Dostęp do tego artykułu jest płatny.
Zapraszamy do zakupu!
Cena: 12.50 PLN (z VAT)
Kup artykuł
Po dokonaniu zakupu artykuł w postaci pliku PDF prześlemy bezpośrednio pod twój adres e-mail.
MS 2020; 5: 56-63
Sławomir Gabryś Streszczenie
Wprowadzenie. Celem badania była ocena wpływu ruchu recyprokalnego OTR oraz obróbki cieplnej stopu niklowo-tytanowego na odporność na złamanie pilników endodontycznych w teście zmęczeniowym.
Materiał i metody. Osiemdziesiąt niklowo-tytanowych pilników endodontycznych o takim samym rozmiarze 25/.06 (po dwadzieścia z każdego rodzaju: E3 (Poldent), E3 Azure (Poldent), Mtwo (VDW), VDW.ROTATE (VDW)) poddano testowi zmęczeniowemu. Narzędzia pracowały w zakrzywionym sztucznym kanale o długości 16 mm, kącie krzywizny 90 stopni i promieniu krzywizny 2,5 mm w dwóch rodzajach ruchu: ciągłej rotacji (300 obr./min.) i ruchu recyprokalnym OTR. Mierzono czas do złamania dla każdego pilnika oraz długość odłamanego fragmentu.
Wyniki. Najdłuższy średni czas do złamania miały narzędzia E3 Azure i VDW.ROTATE pracujące w ruchu recyprokalnym OTR. Najkrótszy średni czas do złamania miały narzędzia E3 i Mtwo pracujące w ciągłej rotacji.
Wnioski. Ruch recyprokalny OTR powoduje wydłużenie czasu do złamania w teście zmęczeniowym dla wszystkich testowanych narzędzi w porównaniu z ciągłą rotacją. Pilniki wykonane ze stopu niklowo-tytanowego poddanego obróbce cieplnej mają dłuższy czas do złamania w teście zmęczeniowym w porównaniu z pilnikami wykonanymi z konwencjonalnego stopu Ni-Ti.
Abstract
Introduction. The aim of the present study was to investigate the impact of OTR reciprocal motion and heat treatment of NiTi alloy on a file’s resistance to fracture in a cyclic fatigue test.
Material and methods. Eighty NiTi endodontic files in the same size 25/.06 (twenty files of every kind: E3 (Poldent), E3 Azure (Poldent), Mtwo (VDW), VDW.ROTATE (VDW)) were subjected to cyclic fatigue test. The files operated in a curved artificial canal with the length of 16 mm, angle of curvature 90 degrees and the curvature radius of 2.5 mm in two kinds of motion: continuous rotation ( 300 rpm.) and reciprocal OTR motion. The time to fracture was measured as well as the length of the fractured fragments.
Results. The higher mean time to fracture had E3 Azure files and VDW.ROTATE files operating in OTR reciprocal motion. The lowest mean time to fracture had E3 and Mtwo files operating in continuous rotation.
Conclusions. Reciprocal OTR motion prolongs the time to fracture in cyclic fatigue test for all tested files in comparison to continuous rotation. The files made of NiTi heat-treated alloy have a longer time to fracture in fatigue test in comparison to files made of a conventional NiTi alloy.
Hasła indeksowe: ciągła rotacja, ruch recyprokalny, ruch OTR, obróbka cieplna stopu Ni-Ti, test zmęczeniowy.
Key words: continuous rotation, reciprocal motion, OTR motion, NiTi heat treatment, cyclic fatigue test.
Piśmiennictwo
1. Lloyd A. Root canal instrumentation with ProFile instruments. Endod Topics. 2005; 10(1): 151‑154.
2. Glossen CR, Haller RH, Dove SB i wsp. A comparison of root canal preparations using Ni‑Ti hand, Ni‑Ti engine‑driven, and K‑Flex endodontic instruments. J Endod. 1995; 21(3): 146‑151.
3. Esposito PT, Cunningham CJ. A comparison of canal preparation with nickel ‑titanium and stainless steel instruments. J Endod. 1995; 21(4): 173‑176.
4. Shen Y, Zhou H, Zheng Y i wsp. Current challenges and concepts of the thermomechanical treatment of nickel ‑titanium instruments. J Endod. 2013; 39(2): 163‑172.
5. Walia HM, Brantley WA, Gerstein H. An initial investigation of the bending and torsional properties of Nitinol root canal files. J Endod. 1988; 14(7): 346‑351.
6. Cheung GS, Shen Y, Darvell BW. Does electropolishing improve the low‑cycle fatigue behavior of nickel‑titanium rotary instrument in hypochlorite? J Endod. 2007; 33(10): 1217‑1221.
7. Gutmann JL, Gao Y. Alteration in the inherent metallic and surface properties of nickel‑titanium root canal instruments to enhance performance, durability and safety. A focused review. Int Endod J. 2012; 45(2): 113‑128.
8. Gambarini G, Grande NM, Plotino G i wsp. Fatigue resistance of engine‑driven rotary nickel ‑titanium instruments produced by new manufacturing methods. J Endod. 2008; 34(8): 1003‑1005.
9. Zinelis S, BEng MD, BEng TT i wsp. The effect of thermal treatment on the resistance of nickel‑titanium rotary files in cyclic fatigue. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007; 103(6): 843‑847.
10. Zupanc J, Vahdat ‑Pajouh N, Schäfer E. New thermomechanically treated NiTi alloys. A review. Int Endod J. 2018; 51(10): 1088‑1103.
11. Boutsioukis Ch, Lambrianidis T. Factors affecting intracanal instrument fracture. W: Lambrianidis T (red.). Management of fractured endodontic instruments. A clinical guide. Cham, Switzerland: Springer; 2018: s. 31‑60.
12. Gambarini G, Piasecki L, Miccoli G i wsp. Classification and cyclic fatigue evaluation of new kinematics for endodontic instruments. Aust Endod J. 2019; 45(2): 154‑162.
13. Ertuğrul IF, Orhan EO. Cyclic fatigue and energy ‑dispersive X‑ray spectroscopy examination of the novel ROTATE instrument. Microsc Res Tech. 2019; 82(12): 2042‑2048.
14. Yared G. Canal preparation using only one Ni‑Ti rotary instrument. Preliminary observations. Int Endod J. 2008; 41(4): 339‑344.
15. Bürklein S, Schäfer E. Apically extruded debris with reciprocating single‑file and full‑sequence rotary instrumentation systems. J Endod. 2012; 38(6): 850‑852.
16. Endostar Provider brochure. Endostar 2019. Warsaw, Poland Online: http://www.endostar.eu/en/downloads? download=62:endostar‑provider‑navigator‑leaflet [dostęp: 4.12.2019].
17. Plotino G, Grande NM, Mazza C i wsp. Influence of size and taper of artificial canals on the trajectory of NiTi rotary instruments in cyclic fatigue studies. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010; 109(1): e60‑66.
18. Plotino G, Grande NM, Cordaro M i wsp. Influence of the shape of artificial canals on the fatigue resistance of NiTi rotary instruments. Int Endod J. 2010; 43(1): 69‑75.
19. Gambarini G, Piasecki L, Miccoli G i wsp. Classification and cyclic fatigue evaluation of new kinematics for endodontic instruments. Aust Endod J. 2019; 45(2): 154‑162.
20. Pedullà E, Corsentino G, Ambu E i wsp. Influence of continuous rotation or reciprocation of optimum torque reverse motion on cyclic fatigue resistance of nickel ‑titanium rotary instruments. Int Endod J. 2018; 51(5): 522‑528.
21. Ahn SY, Kim HC, Kim E. Kinematic effects of nickel‑titanium instruments with reciprocating or continuous rotation motion. A systematic review of in vitro studies. J Endod. 2016; 42(7): 1009‑1017.
22. Cheung GS, Peng B, Bian Z i wsp. Defects in ProTaper S1 instruments after clinical use. Fractographic examination. Int Endod J. 2005; 38(11): 802‑809.
23. Plotino G, Grande NM, Cordaro M i wsp. A review of cyclic fatigue testing of nickel‑titanium rotary instruments. J Endod. 2009; 35(11): 1469‑1476.
Piśmiennictwo
1. Lloyd A. Root canal instrumentation with ProFile instruments. Endod Topics. 2005; 10(1): 151‑154.
2. Glossen CR, Haller RH, Dove SB i wsp. A comparison of root canal preparations using Ni‑Ti hand, Ni‑Ti engine‑driven, and K‑Flex endodontic instruments. J Endod. 1995; 21(3): 146‑151.
3. Esposito PT, Cunningham CJ. A comparison of canal preparation with nickel ‑titanium and stainless steel instruments. J Endod. 1995; 21(4): 173‑176.
4. Shen Y, Zhou H, Zheng Y i wsp. Current challenges and concepts of the thermomechanical treatment of nickel ‑titanium instruments. J Endod. 2013; 39(2): 163‑172.
5. Walia HM, Brantley WA, Gerstein H. An initial investigation of the bending and torsional properties of Nitinol root canal files. J Endod. 1988; 14(7): 346‑351.
6. Cheung GS, Shen Y, Darvell BW. Does electropolishing improve the low‑cycle fatigue behavior of nickel‑titanium rotary instrument in hypochlorite? J Endod. 2007; 33(10): 1217‑1221.
7. Gutmann JL, Gao Y. Alteration in the inherent metallic and surface properties of nickel‑titanium root canal instruments to enhance performance, durability and safety. A focused review. Int Endod J. 2012; 45(2): 113‑128.
8. Gambarini G, Grande NM, Plotino G i wsp. Fatigue resistance of engine‑driven rotary nickel ‑titanium instruments produced by new manufacturing methods. J Endod. 2008; 34(8): 1003‑1005.
9. Zinelis S, BEng MD, BEng TT i wsp. The effect of thermal treatment on the resistance of nickel‑titanium rotary files in cyclic fatigue. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007; 103(6): 843‑847.
10. Zupanc J, Vahdat ‑Pajouh N, Schäfer E. New thermomechanically treated NiTi alloys. A review. Int Endod J. 2018; 51(10): 1088‑1103.
11. Boutsioukis Ch, Lambrianidis T. Factors affecting intracanal instrument fracture. W: Lambrianidis T (red.). Management of fractured endodontic instruments. A clinical guide. Cham, Switzerland: Springer; 2018: s. 31‑60.
12. Gambarini G, Piasecki L, Miccoli G i wsp. Classification and cyclic fatigue evaluation of new kinematics for endodontic instruments. Aust Endod J. 2019; 45(2): 154‑162.
13. Ertuğrul IF, Orhan EO. Cyclic fatigue and energy ‑dispersive X‑ray spectroscopy examination of the novel ROTATE instrument. Microsc Res Tech. 2019; 82(12): 2042‑2048.
14. Yared G. Canal preparation using only one Ni‑Ti rotary instrument. Preliminary observations. Int Endod J. 2008; 41(4): 339‑344.
15. Bürklein S, Schäfer E. Apically extruded debris with reciprocating single‑file and full‑sequence rotary instrumentation systems. J Endod. 2012; 38(6): 850‑852.
16. Endostar Provider brochure. Endostar 2019. Warsaw, Poland Online: http://www.endostar.eu/en/downloads? download=62:endostar‑provider‑navigator‑leaflet [dostęp: 4.12.2019].
17. Plotino G, Grande NM, Mazza C i wsp. Influence of size and taper of artificial canals on the trajectory of NiTi rotary instruments in cyclic fatigue studies. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010; 109(1): e60‑66.
18. Plotino G, Grande NM, Cordaro M i wsp. Influence of the shape of artificial canals on the fatigue resistance of NiTi rotary instruments. Int Endod J. 2010; 43(1): 69‑75.
19. Gambarini G, Piasecki L, Miccoli G i wsp. Classification and cyclic fatigue evaluation of new kinematics for endodontic instruments. Aust Endod J. 2019; 45(2): 154‑162.
20. Pedullà E, Corsentino G, Ambu E i wsp. Influence of continuous rotation or reciprocation of optimum torque reverse motion on cyclic fatigue resistance of nickel ‑titanium rotary instruments. Int Endod J. 2018; 51(5): 522‑528.
21. Ahn SY, Kim HC, Kim E. Kinematic effects of nickel‑titanium instruments with reciprocating or continuous rotation motion. A systematic review of in vitro studies. J Endod. 2016; 42(7): 1009‑1017.
22. Cheung GS, Peng B, Bian Z i wsp. Defects in ProTaper S1 instruments after clinical use. Fractographic examination. Int Endod J. 2005; 38(11): 802‑809.
23. Plotino G, Grande NM, Cordaro M i wsp. A review of cyclic fatigue testing of nickel‑titanium rotary instruments. J Endod. 2009; 35(11): 1469‑1476.